REPORT
OF
THE CENTER OF ADVANCED INSTRUMENTAL ANALYSIS
KYUSHU UNIVERSITY
NUMBER 15

1997

九州大学
中央分析センター
機器分析学の進歩

1. 中性子スピンエコー法による量子スピン回転の
観測

研究報告

1. インターカレーショに関するヨウ化銅系微粒状
ペロプサイド基報紙粒子膜
研究

2. イオンビーム照射によるコバルト
シリサイド生成と構造

3. アゾ色素をドープした高分子薄膜施工装置の
電気光学効果

4. ICP-MSによる岩石試料中の極微量鉄の定量

5. エネルギー分散型X線検出器の開発と応用

6. ダイオキシンの光分解

武井 哲夫

江黒 正直、力久 満院

高橋 聖、秀敏、宏規

河口 定生

正直、力久、満院

中西 喜男、横山 克史

柳原 紐、義明、山田 健志

掛川 紘、伊藤 隆

 reefs

武井 哲夫

江黒 正直、力久 満院

高橋 聖、秀敏、宏規

河口 定生

正直、力久、満院

中西 喜男、横山 克史

柳原 紐、義明、山田 健志

掛川 紘、伊藤 隆

 reefs
Quantum spin precessions observed by neutron spin interferometer

Norio ACHIWA, Masahiro HINO, Toru EBISAWA

(Department of Physics, Kyushu University, Fukuoka, Japan, 810-0001)

We have developed new types of neutron spin interferometer based on coherent superposition of the two spin states of ↑ and ↓ neutrons in a magnetic field, similar to a neutron spin echo spectrometer. By means of the neutron interferometer, we have observed Larmor precession of neutron spin through a magnetic layer or a tunneling region, a magnetic Fabry-Perot film in a bound state of ↑ spin neutron, a magnetic multilayer at Bragg condition and a helical single crystal of holmium at magnetic Bragg condition. The observed spin precessions through these magnetic potentials are well reproduced by the phase differences of ↑ and ↓ spin wave-functions of neutron solved by Schrödinger equation based on the one dimensional/rectangular magnetic potentials. We will discuss whether the observed phase velocity of neutron through such magnetic potential barriers can be interpreted as the group velocity of neutron or not.
中性子分野では、中性子波を空間分散後再結合する中性子干渉計を用いた中性子波の位相シフトの測定により、中性子と繊維の電気的な相関を測定する方法が考案されている。中性子波の分散、相関問題における基準量子力学問題に取り組まれてきた。

我々は、中性子を空気空間に、エネルギー空間に分散し、再結合する新たな中性子波長変換の効果により、かなりずしも単純な方法を必要としない方法により、量子スピノフロアモデル“や、量子ビート、ラーメータ時間を用いたトンネル時間などを観測した**"。これにより、中性子スピン・エポジの原理を中性子光学に適用し、ビーム磁化强度中性子スピン翻転デバイスとして用いたものである。

すなわち、中性子スピンのスピンの性質に基づいた量子力学的構想では、ラーメータ回転中性子は、量子化軸に沿ったスピン波動状態の他相転を必要とする。これにより、スピンの回転軸はスピン波動状態の他相転に対応している。中性子スピンの回転スピンねじを、Koch, Zeitinger, およびSumhammer*等により中性子干渉計を用いて実験されたが、このとき非磁化体をフレクターを片方の波長に応じて、位相差を変化させるスピン回転が観測されることに注意が必要である。

\[S_0(\theta) = \frac{1}{2} (I_1 + e^{i\phi} I_2) \]

\[\psi(\phi) = \cos \phi \]

ここでは \(\theta \) は回転角である。

相関位相は必要とせずに、スピン干渉計のためのスピン波動状態の他相転の何を由来するかだけでなく、任意の方法で、スピン波動状態の位相差とそれをつけると、それが位相をスピン回転として、スピン波動状態の干渉計を測定できることが期待される。たとえば、環状系における磁性体とスピンの測定はこれの方法を用いることが可能である。新しいスピン干渉計は、スピン状態の異なる部分を測定する。それらの重ね合わせの機能を制御し、研究目的に応じて中性子スピン磁化光子を付加的に配置できるようになっており、多旋磁性スピン干渉現象の起こることが可能である。中性子光学計測を用いる、様々な特性のビーム磁化強度中性子スピンリッパーが用いられる。この新しい
2. 均一場中での中性子ラーモア回転

中性子は核スピンが1/2を持つフェルミオンであるから物質波として自己分散ののみで
済むと考えられている。電場中で中性子の核スピンは、電場に平行または反平行の2つの
エネルギー固有状態に分かれる。中性子スピンが量子化場中の電場に偏角をした状態では、
中性子スピンは電場の回りを論理回転する。量子力学の解釈によれば、このラーモア回転
状態は(4)式のように中性子の1/2スピンを動く状態の従来を含むので、時間回転は、
再保存衡の時間発展の回路を図式化に起因する。

\[
\langle \phi(r,t) \rangle = \sum_{\alpha=\pm} \left[\frac{1}{\sqrt{2}} \exp \left(-\frac{i}{\hbar} \frac{2\mu}{\hbar} T \right) \phi_\alpha \right]
\]

\[
S(t) = \frac{\hbar}{2} \left(\langle \phi(r,t) | \partial_t \phi(r,t) \rangle - \langle \phi(r,t) | \phi(r,t) \rangle \right)
\]

2.1. 均一場中における中性子のラーモア回転

\[
\langle \phi(r,t) \rangle = \left(\sum_{\alpha} e^{i\omega_{\alpha} \tau} \phi_{\alpha}(r \times \mathbf{e}_\tau) \right)
\]

- 1 -
中性子スピンエンコーディング（NSE）や中性子スピン干渉（NSI）実験（Fig. 1参照）において、π/2スピンフリッパーより未照射中性子のスピン方向はz方向からxy面内に回される。ラーモーレッジ運動を開始する。このπ/2スピンの成分の振動、つまりラーモーレッジ振動は、2つの部分波\(\phi_1 \)と\(\phi_2 \)の干渉により起こる。黒板上で\(\phi_1 \)だけポテンシャルエネルギーが異なる2つの部分波\(\phi_1 \)と\(\phi_2 \)は、相殺及び減速をそれぞれ受け合う。\(h=\alpha(1\pm\phi_1/\phi_2)^{1/2} \)

その結果、2つの固有状態の中性子波の重なりは緩方向に分離し空間位置相関が生じる。

ラーモーレッジ振動数は\(\omega_0=\frac{2\pi}{\tau} \)である。従って、均一黒板で走る中性子の\((k_0, \gamma) \)スピン面での位相角は、ビーム上のある場所\(r \)と\(\gamma \)とのときは

\(\phi(r)=\phi(r_0)+\omega_0 r/\tau \)

で進むことになる。すなわち、ラーモーレッジ時間と中性子の飛行時間とは均一黒板中では良い一致を示す。

3. 磁気ポテンシャル場に置き換わる位相変化の中性子スピン干渉計による観測

磁化した強磁性磁気核に影響を与える中性子スピンは位相変換を示す。これは、磁化した中性子波ベクトル成分が相互に反対に回転することにより、スピンの方向によって感じる磁気ポテンシャルの符号の違いにより異なる値を有するからである。
ここで、\(E_0 \)は真空の中で原子核の運動エネルギーであり、\(\mu \)は、それぞれ核の平均核ベクトリオルおよび転移ベクトリオルを表す。ラーメオ中性子を微小な
反射および透過でその1スピン成分の波動関数には、それぞれ異なる位相が生じるが、これらの相達は、1スピン成分に対する異なったポテンシャル障壁に
起因する。これら2つの障壁にスピン変化を伴わせることにより、波動関数の位相差は、中性子スピンエンコーディング装置を用いることで有効に反応する。なお、スピンエンコーディング装置のスピン翻訳は、磁化によりスピンの相変化を導入することにより観測することが可能である。スピンエンコーディング
装置の\(\pi/2 \)スピンフリッパーと中性子のスピン空間分離器とを組み合わせることにより、ラーメオ中性子を強
磁性材料に反射しつつ1スピン中性子の波動関数の位相差を決める。エコーワーの\(\pi/2 \)フリッパーにより中性子スピンを再結合させ、次式の中性子スピンエンコーディング装置により、波動関数の位相を求めることができる。

\[
\Delta N = N_0 - N_1 + \Delta N \quad \text{(11)}
\]

\[
\Delta N = (0, S) \quad \text{(12)}
\]

ここで、\(N_0, N_1 \)はラーメオ反射器の反射や透過とその区間の長さの比を示し、\(\Delta N \)は中性
子の通過数、\((0, S) \)は1スピン変化を導入することにより、波動関数の位相差を導入する。
3.1 ラーモア時間による磁気破壊トンネル時間、量子井戸変形時間の測定

近来半導体のトンネルダイオードや、走査トンネル顕微鏡など量子状態のトンネル効果は実用的に看に用いられている。しかし、トンネル時間に関しては定義が研究者間でまだ一致していない。量子力学では、時間に依存する測定値は存在しない。そのむかし、Braaten はトネル関数を通過する時間をスピンのラーモア時間として定義した。我々は磁気破壊トンネル効果によるスピンはラーモア時間とシリンズ形状を考慮して、スピンのラーモア時間と対照した。Fe磁気体およびパルマロイド45磁気体では、スピンは磁気破壊で通過し、1スピンはそのまま通過する。このようなトンネル経路はラーモア時間で測定する実験的示唆は世界初である。Fe、およびパルマロイドにおいて層厚300 μm、400 μmのトネル磁性子のラーモア反転を調べた。

Fig. 1. The Shift of NMR signal intensity through penetration of film with thickness of 200 μm as a function of incident angle. The closed circles are obtained and the open lines are calculated from matrix analysis of the second spin rotation and one-dimensional rectangular potential in the Schrödinger equation. The broken vertical lines at 1.4° and 0.4° indicate the critical angles of total reflection for 1 and 4 spins, respectively for the wave length of 12.6 μm.
①次元圧磁ボテンシャルにおけるトンネル状態の中性子波は（10）式で
定義された波動ベクトルは虚数になり位相が定義出来ない。しかし、1次元圧磁ボテンシャル
を透過後の中性子波の位相は次式で与えられる。

\[\tan(\Delta \phi) = \frac{2ax}{x} \tan(b(x,d)) \]

\[\tan(\Delta \phi) = \frac{2ax}{x} \tan(b(x,d)) \]

（15）

ここで波数は、

\[k = \frac{\sqrt{2m(U+2d)}}{\hbar} \]

\[\frac{\pi}{2} < \theta < \pi \]

これを満たすため、トンネル波の中性子の波長は、\(\Delta \phi \neq \Delta \phi \lambda \)と与えられる。

Figure 3は、筆者らがより観測された厚さの200 Aのパラメートリック放電圧の通過中の中性子スビ
ン回転である。中性子の入射角は全反射角の値より減少させたが、実験では、1次元矩形
関数ボテンシャルモデルによるSchödinger方程式の解が得られ、に1スピン波動
関数の位相が定義である。両波動関数の形は一致し、中性子スピン回転は単調に零減する。この過程は、直角から離れ
たところでは古典的ラーモーラ時間と一致する。一方、1スピン中性子のご入射角
入射角を変化させ、中性子スピン回転は増加し逆の傾向を示す。全反射
入射角を変化させ、中性子のトンネル時間は、エネルギーの低い中性子波を短い時間でトン
ネル陣列を通過すると言う一致的な結果が得られた。このスピン回転を古典的ラーモーラ
時間で解釈すると、トンネル時間は2 × 10−8 secであった。この結果、いわば、波動
関数の形を、古典的ラーモーラ時間に適応させたもので、中性子の群速度を求めたもの
ではない。中性子の群速度を求めたには、中性子波が、空間に生じた状態波をつくる必
要がある。このために、エネルギーを持つ状態波が、中性子波を重ねた波状波をつくる
必要がある。波長を変化させる中性子波長が実験でこのみに可能性があることを
示した。最近、大勢らは、ネルソン波の量子化法を用いてトンネル現象の実時間発展を
求めたが、トンネル現象がこのような測定された変数時間よりも長い結果を得ている。

3.2 磁気Fabry-Perot洞による井戸型ボテンシャル中性子束時間の測定
中性子波が磁気Fabry-Perot洞における時間は、ラーモーラ時間による物理的解釈
が有効と思われる。なぜなら、パラメータ（100 A）×パラメータ（100 A）
×パラメータ（100 A）×パラメータ（100 A）における中性子波長で、ゲルニムセル内では中性子波の位相が定義されるからである。Fig.
4. 以下の結果が得られた。例えば、中性子を含む中性子エネルギーを考慮するため、非対称中性子透過と中性子スピン回転が、中性子入射角の関数として示されている。この場合、スピノン中性子の透過度は 1 および 5 で 1 までの値を示す。スピン 1 とスピン 5 の透過度の方が他の値に比べて高い傾向がある。このスピン効果は、入射角の影響を考慮した場合においても、数値を明らかに示すことができる。これらの結果に基づき、実験データを解析するためのモデルが構築された。このモデルは、実験結果を説明し、実験設定の改善に貢献する可能性がある。
4. ラーモア中性子の磁気多層膜ブロック条件での透過中性子のスピン回転

4.1 ポテンシャル障壁による影響

ラーモア透過中性子のパーサンバイ（Peoria, Illinois）55 kV/75 kV Aの15枚磁気多層膜のブロック条件での透過波の際は、入射中性子の運動エネルギー成分による1スピン中性子波動関数の1次元時間磁気ポテンシャルに対するシュレーディンガー方程式解として与えられる。この磁気多層膜は1スピン中性子に対しては366 keV・700 keV、1スピンに対しては116 keV・700 keVのポテンシャル障壁（Fig. 9）を与える。1スピンの平均運動エネルギーの1および1スピン中性子の波動関数は次式で与えられる。

\[
\phi_{1s}(r) = A_1 e^{i\phi_1} + B_1 e^{-i\phi_1}
\]

波動関数の（1s）をベクトルの（1s）で表すと、最初の錐体での波動関数は\(\psi(r) = \frac{1}{r_2} \)であり、最後の錐体での波動関数は\(\psi_{1s}(r) = \frac{1}{r_0} \)となる。ここで実際および速度因子の\(v \)および\(\psi \)を用いた。これらは運動量マトリックスM, M₀で関係づけられる。

\[
\begin{bmatrix}
1 \\
\frac{1}{r_2}
\end{bmatrix} = [M_{1s}, M_{0s}] \begin{bmatrix}
A_1 \\
B_1
\end{bmatrix}
\]

- 10 -

Fig. 5 Transmission probabilities of 1(●) and 1(○) spin neutrinos through permalloy (55 A)/Ti (54 A) multilayer of 15 bilayers as a function of incident angle for the wavelength of 12 Å. The solid lines are the calculated transmission probabilities based on one-dimensional schrodinger equation with periodic rectangular potentials for 1 and 1 spins.
Fig. 6 The shift of NSE signals as well as calculated transmission probabilities of 7 spin neutrons through permalloy 45(5A)， Ti(5A) multilayer of 15 bilayers as a function of incident angle for the wavelength of 12.6A. The solid line is the calculated Lorentz parameters as well as the broken line, the calculated transmission probability across the Bragg condition as a function of incident angle, on the basis of solving Schrödinger equations for one dimensional periodic potential of rectangular type for 7 and 8 spins.

これを利用して透過係数を \(T \) と \(e^{i\phi} \) と求められる。ここで \(T \) は透過係数である。中性子の

\[T \propto \frac{1}{2} \left(1 + \frac{1}{2} T \right) \]

(16)

\[S_n = \frac{1}{2} \left(T + T^- \right) \]

(17)

\[S_n = \frac{1}{2} \left(T + T^- \right) \]

(18)

この時の中性子スピンエコーニンナルの振幅は、磁気透過 \(T \) と \(T^- \) と、中性子の透過確率で表すことができる。

\[P = 2 \left(S_0 \right) \]

(19)

\[\left(S_0 \right) = \frac{1}{2} \left(T + T^- \right) \]

(20)

\[P = 2 \left(S_0 \right) \]

(21)

ここで \(P \) は、磁気透過が強い時の NSE シグナル振幅である。
4.2 中性子スピン干渉計と実験方法

今回使用した中性子スピン干渉計の配置を図1に示す。摂入された磁気はシリコン基板上に蒸着されたバーマロン（Fe-Ne）55% /Th5%の15層構造である。ラーモー回転する126 ± 0.4μの中性子ビームは、雑散射角Δθ=0.7×10⁻⁵°を有する。摂入した磁気波に対する中性子の入射角を変化させて量子化方向に偏光した1↓1スピン中性子の磁気多層板透過率を測定した。その実験結果を図2に示す。↓1スピン中性子はともにプラグ反射試料と前向き回折の2波に分かれる。透過波はプラグ反射の透過透過率の減少が見られるが、↓1スピン中性子のプラグ角には影響されない、影響で↓1スピンが高角度である。実験はシミュレーションによく計算值と、実験との一致はほぼ実験誤差程度である。

次に中性子スピンエコー干渉計に磁気多層板を挿入し、入射角の間隔として中性子スペインの回転を測定した。↓1スピン中性子の透過の2波は図6に示すようにプラグ反射条件の近辺で異常な回転を示す。

この実験結果は、前節の1次元ポテンシャルモデルによるシミュレーションと見事に一致し、その結果が図6の実験に示されている。この結果は、完全結晶状態のプラグ条件での透過波の偏光変化と類似であり、磁性結晶の磁気学的特性の新しい興味深い手段を与えると思われる。磁性体特性について磁気学的特性の測定を直接測定することは、完全結晶が磁性体で得られていないので困難である。しかし、中性子スピン干渉計によ
5 ヘリカル磁性の気磁的プラック条件における透過中性子のスピン回転

ヘリカル軸と中性子スピンの量子化軸が平行な場合のラモア中性子によるヘリカル結晶透過中性子スピン回転を考える。下記の通りxやy面内で回転するqベクトルを持つヘリカル磁性を考える。

$$M(q) = M(q \cos \theta + \sin \theta)$$

ヘリカル磁場中での中性子のポリトニアンは次式である。

$$H = \frac{\hbar^2}{2m} \mathbf{p}^2 + V \mathbf{r}$$

$$M(q) = M(q \cos \theta + \sin \theta)$$

ヘリカル磁場中の中性子の運動方程式は、入射中性子の運動ベクトルをkとすれば、

$$\phi(k, z) = \begin{pmatrix} e^{ikz} \end{pmatrix}$$

$$\phi(k, z) = \begin{pmatrix} e^{-ikz} \end{pmatrix}$$

単位長さあたりの中性子スピン回転

$$\alpha = \frac{C^2}{2} \left(\frac{q^2}{2} - \frac{q^2}{2} \right)$$

とする。この解は、完全ヘリカル結晶の磁気プラックのスピン子反応に磁気結晶のロックインと呼ばれる角度が近づくと回転角は一定に固定され、その回転角が大きいことを示す。
6 おわりに

中性子スピンエフェクト法による中性子スピン干渉計を提案製作し、中性子の磁気異オンネルト
ル時間、磁気異オンスミルク時間、磁気異異磁気効と干渉位相、ヘルニア磁気異磁気プ
ラッグ反時における透過中性子のラモア回転位相等を変換した。これら干渉計に応
するラモア回転位相の中性子の局、磁気異迴反位のスピン中性子が磁磁回転して、磁気
回転位相の超微として新たなスピン回転をもたらす。この中性子スピン回転により、ボン
タンシル熱倶による1スピン中性子の磁気波動の磁気干渉位相差を実験的に求めるためにある。こ
れから観測された中性子スピン回転は1磁気波動ボタンシル熱倶による磁気波動干渉シミューレ
ーションの結果と良い一致をみた。中性子スピン干渉計が中性子の異なる磁性波動の干
渉波の磁気干渉を測定できるかどうか詳細は出ている。しかし、我々は中性子エネルギーの持
有
7 結 言

本研究は科研費重点領域研究「超低エネルギー極高圧状態中の量子力学」の成果を基にした。量子力学的観察を実現するため、トンネル時間形を用いた新技術が提案されている。

参考文献

Preparation of Oriented Thin Film of PbI-Based Layered Perovskite Superlattice by Intercalation of Organic Ammonium Iodide into PbI.

Masanao Fut, Yuki Rikihita, and Tetsuo Tsurumi

Department of Materials Science and Technology,
Graduate School of Engineering Sciences, Kyushu University

Oriented thin films of PbI-based layered perovskites having an organo-inorganic superlattice structure were successfully prepared by intercalation of organic ammonium iodide into lead iodide PbI thin films. Vacuum-deposited PbI films were exposed to vaporized phenyltrimethylammonium iodide in vacuo (at 10^-4 torr). After the exposure, the film exhibited a strong exciton absorption at around 2.4 eV, demonstrating that the PbI structure was converted to PbI-based layered perovskite structure by intercalating phenyl ammonium iodide into PbI film. From X-ray diffraction measurement, further, it is demonstrated that the layer structure was oriented parallel to the film plane in the intercalated film, only diffraction peaks corresponding to the layer spacing ([0 0 20] peaks) were observed in the X-ray diffraction profile of the intercalated film.
第1 総説

鉱ハイブライド系の層状ペロブスカイト化合物（RNH₄）₂Ph₄Xは、鉱ハイブライド Ph₄Xの側面半導体層と有機アンモニウム RNH₄層との間で、互いに相溶化した塩結晶（Fig. 1）を自己組織的に形成する。この化合物は、その極性変化させられた半導体構造（量子井戸構造）に基づいて、

室温においても安定な短寿命を発生し、そのガラス化に起因した半導体の非線型光学効果、フォトミネッセンスや反電トロミネッセンスを示すことが報告されており、非線型光学デバイスや発光デバイスの材料として顧客が持たれる。

これまで層状ペロブスカイト化合物の作製法として、水蒸気発生による結晶化やスピンドル型による凝縮化が用いられてきたが、本研究において、我々はヨウ化鉱 Ph₄Iを基材として作製したインナーケーションにより、Ph₄I基層状ペロブスカイト化合物の開発が実現されることを見出した。この結果、層状ペロブスカイト化合物の新しい作製法とし、このインナーケーション法について報告する。

2. 実験

インナーケーションを用いる有機アンモニウム化合物としてヨウ化フェノールの塩（Cs₄H₄C₆H₄NH₄Br、PHEI と略）を用いた。真空度10⁻⁵torrでヨウ化鉱 Ph₄Iを20mm程度の厚さに真空蒸着した後、濃厚PHEI溶液を急速蒸発により蒸着させPh₄I薄膜にPHEI蒸気を吹きかすことにインナーケーションさせた。層状ペロブスカイト構造の形成は、薄膜の吸収スペクトルを測定し、ヨウ化鉱基層状ペロブスカイトが示す特有の短寿命吸収ピークの有無から確認した。また、膜の配向構造はX線回折測定により評価した。
Fig. 2 (a) にインカレオションにより作製された薄膜の吸収スペクトルを示す。ヨウ化銅およびヨウ化フェチルアミンの蒸着膜の吸収スペクトルと比較すると、これらの蒸着膜に見られない新しい吸収が 2.4 eV付近に見られることがわかる。またインカレオション膜の吸収スペクトルは、Fig. 2 (b) に示したフェチルアミンを有機溶媒を用いてヨウ化銅蒸着層状パラソライト化合物 FIREPhを塗布した膜の吸収スペクトルをよく一致している。この 2.4 eV付近に見られる新しい吸収は、ヨウ化銅蒸着層状パラソライト化合物特有の励起子吸収である。このことからインカレオション膜において層状パラソライト構造が形成されていることがわかる。

Fig. 3 にインカレオション膜のX線回折プロファイルを示す（profile a）。PHEDPh4結晶粉末のプロファイル（profile b）に比較すると、インカレオション膜においては（002）面に特有な回折ビックのみが観測されている。このことは、インカレオション膜においてその層構造が膜面に平行に配向していることを示している。しかし、回折ビックのビック幅が広いことから、得られた層状パラソライト構造の均一さがかなり大

Fig. 2. a) Absorption spectrum of PHED (film exposed to phenethyl ammonium iodide vapour (solid line). Broken and dotted lines show absorption spectra of vacuum-deposited films of PHED and phenethyl ammonium iodide (PHI).

b) Absorption spectrum of PHED-based layered pervaporphilic with phenethyl ammonium layer as an organic layer (PHEDPh).

Fig. 3. X-ray diffraction profiles of PHED film exposed to phenethyl ammonium iodide vapour (profile a), powdered sample of PHED-based layered pervaporphilic with phenethyl ammonium layer as an organic layer (profile b) and vacuum-deposited PHED film (profile c).
次に、ヨウ化銅の蒸着膜のX線回折プロフィールを図1に示す。このプロファイルにおいても（001）面に対応した鉛直ピクーがわずかながら観測されており、層状ペロブスカイト構造に変換されていないPbSnが部分的に存在していることもわかる。現段階では充分に高品質の層状ペロブスカイト薄膜が得られているとは言えない。今後、製膜条件に関する詳細な検討が必要である。

最近、ヨウ化銅の蒸着膜において、ヨウ化銅の蒸着膜の層状構造を制御する方法として、X線回折の結果が示すように、層状ペロブスカイト構造が形成されていることが報告されている。X線回折の結果は蒸着膜の構造を解明するための重要な情報を提供するものであるが、層状構造を制御するためにはさらに詳細な検討が必要である。

最後に、このインクレーショング法において、ヨウ化銅の蒸着膜を用いた成膜作業においても応用可能であることを示す。蒸着膜の作成において、層状ペロブスカイト薄膜の形態を制御するためには、蒸着条件の調整が重要である。Fig. 4にヨウ化銅の蒸着膜の構造を図1に示す。1.6×10^{-6} Paでスチールの蒸発圧の下に蒸着膜を成膜した結果、薄膜の構造が得られている。

4. 結論
ヨウ化銅薄膜の蒸着膜において、層状ペロブスカイト構造を制御するためには、蒸着条件の調整が必要である。この研究成果は層状構造を制御するための重要な基礎を提供するものである。今後、さらに詳細な検討が必要である。
参考文献
Cobalt Silicide Formation at Room Temperature by Ion Beam Irradiation

Cobalt silicide layers formed by ion beam irradiation at a temperature in the range of room temperature to 500°C have been investigated. It was shown that silicidation was induced at lower temperature for Co/Si structures irradiated with ion beams than those without irradiation. CoSi and CoSi_2 phases were identified by x-ray diffraction for CoSi samples irradiated with 25 keV argon ions to a dose of 2.0 x 10^16 cm^-2 at room temperature and 2.0 x 10^17 cm^-2 at 450°C, respectively. The amount of intermetallic silicon atoms in the CoSi layers was evaluated as a function of dose for samples irradiated with 40 keV focused silicon ion beams. It has shown that the growth kinetics is diffusion-limited and can be attributed to radiation-enhanced diffusion with an activation energy of 0.16 eV.
高融点金属シリサイドは、半導体デバイスの電極・配線材料として関心が持たれている。これは、従来より電極・配線材料として使われている多結晶シリコンに比べて低抵抗率が約1/3小すること、アルミなど金属系材料に比べて化学的に热的安定性に優れるためである。特にCoSiは、抵抗率が13-12μΩcmと小さく、またシリコン結晶との格子定数の整合性が良いなどの理由によって活発に研究されている。一般的なVLSIデバイス製造工程において、高融点金属シリサイドは高温処理により形成される。特に、高融点金属融解/シリコン結晶基板の融解応反応により低抵抗率シリサイドを形成するためには、温度を十分に保温するため高温熱処理が必要である。しかし、高温熱処理を施すと、デバイスの電気特性を制御するためにシリコン結晶中に入込んだドーパントの分散が乱れてデバイス機能を破壊される。デバイス特性を著しく低下させる原因となる。高融点金属/シリコン融解応反応を促進するためのエネルギーを、熱エネルギーや熱の形態、例えば、イオン照射により補う、熱処理の有効な場合として低融点でのシリサイド形成が可能である。このため、イオン照射によるシリサイド形成は、半導体デバイスの電極・配線の低融点形成法として期待される。

固相反応により形成されるコバルトシリサイドは、溶融温度の違いによって、CoSi、CoSi系の3つの相が存在することが知られている。熱処理によるコバルトシリサイドの成長機構は、全ての相について詳しく研究されている。一方、イオン照射によるシリサイドの成長形成については、十分に解明されていない。特に、コバルトシリサイドの成長機構は、CoSi系の相についていくつかの報告があるが[]のみである。

本研究では、室温から500℃の温度範囲においてイオン照射によって形成されるコバルトシリサイドの相と成長機構を調べた。イオン照射には、アルゴンイオンおよびシリコンイオンをイオンビームを用いた。コバルトシリサイドの相は、X線回折を用いて確認した。次に、形成されるコバルトシリサイド層に対するイオン照射温度依存性を調べた。これらの結果を基に、室温から500℃の温度範囲におけるイオン照射によって形成されるコバルトシリサイドの成長機構について議論する。また、照射によるシリサイド成長をプロセス効率の観点から論じる。

1. 実験

実験には、ラウンド棒、m棒、抵抗率1.5 GΩcmのCu-Si(100)ウェーを使用した。この
３．結果及び考察
(1) シリサイド層の同定
照射基板温度200-500℃の範囲でアルゴンイオン（照射量1×10^{17}cm^{-2}）を照射したCo-Si薄膜試料のX線回折測定結果をFig.1に示す。

400℃以下の照射温度では、CoSi₀₃に対応するピークは観測されなかった。

Fig. 1 Rocking curves of x-ray diffraction for samples irradiated with 25 keV argon ions to a dose of 1.0×10^{17} cm^{-2} at a temperature in the range of 200-500℃. The thickness of the initial cobalt films is 70 Å. The x-ray analysis was performed at an incident angle of 1.0° by using Cu Kα radiation. Before the analysis, unstressed cobalt layer was removed from the samples.
より低温でシリカ化反応が進行する。しかし、この温度範囲ではシリコーン残基とカプロン粘膜の反応が縮小され、GdSi相が形成されることもよく知られている。したがって、この温度範囲で形成されたコロナ化薄膜は、熱反応によりカプロン粘膜にシリカ化フィルムが形成されるという可能性がある。これからの実験結果において、形成されたGdSiに対する熟処理の寄与とイオン照射の寄与を分離することは困難である。イオン照射による差分混合反応を理解するためには、熱エネルギー下ではシリカ化反応が進行しない低温でイオン照射を行い、形成されるシリカ化フィルムの成長機構を調べることが必要である。そこで、室温から100℃の低温領域におけるイオン照射により形成されるシリカ化層の成長機構を詳しく調べた。その結果を次に示す。

(3) イオン照射によるGdSiの成長機構

GdSi核に適度なクラフトソリドを導入して照射し、カプロン粘膜(GdSi)が形成されることを明らかにした。シリコーン残基とカプロン粘膜の熱反応は350℃程度の温度で起こされる。そのときに形成されるカプロン粘膜の層の厚さはGdSiであり、4nmであった。

この低温領域の熟処理においてカプロン粘膜の形成は生じていないことが知られている。したがって、室温におけるイオン照射により形成されたカプロン粘膜は、イオン照射の寄与により形成されたものであると考えられる。この観点では、室温から100℃の低温領域においてイオン照射により形成されるGdSiの成長機構が明らかになる。

室温から100℃の低温領域で形成されるシリカ化層の相を調べるため、2kV、アルゴンイオンをX10³cm⁻²だけ照射した試料のGdSi膜の透射X線回折特性を測定を行った。その結果を図1に示す。図には、比較のため、GdSi基板を試料としたのみの試料および100℃で30分間熟処理のみを行った試料の結果を示す。

Fig. 2. Rocking curves of X-ray diffraction for samples irradiated with 75 keV argon ions to a dose of 1.0 x 10¹⁵ atoms/cm² at room temperature and 100°C, and that irradiated at 100°C for 30 min without heat treatment. The thickness of the initial cobalt film was 32 Å. The curve for the as-deposited 140 Å CoSi layer is also shown. The easy axis of Co was obtained at an incident angle of 10° by using Cu Kα radiation. Before the analysis, uncoated cobalt layers were removed from the samples.
した。照射温度室温および100℃でイオン照射を施した試料には、30 ま1 52においてCoSi2(111)に対
応するピークが観測される。一方、Co膜を拡散したのみの試料および100℃で50分間熱処
理のみを施した試料には、コバルトシリコンに相当するピークは観測されず、Fe-Co(111)
およびCo(111)に対応するピークが観測される。以上より、100℃以下の熱処理によりシ
リコン最適合成は進行しないこと、室温〜100℃の変板温度でイオン照射を施すとCoSi2相
が形成されることがわたった。

次に、相対熱酸発射差によりCoSi2層に取り込まれたシリコン原子数の照射量依存性を
調べた。ここでは、140℃-CoSi2層試料に40keV-シリコン集束イオンビームを、30、40、
60、100℃の温度温度で照射した。CoSi2層に取り込まれたシリコン原子数は、CoSi2層厚とその形
成に要するSi層厚との比に基づき、CoSi2層厚の測定値より推定した。その結果をFig.3に
示す。それぞれの照射温度において、CoSi2層に取り込まれた原子数は照射量の増加に比例
することがわかった。これは、照射熱酸発射差によるCoSi2形成反応が、反応系の拡散によ
り律速されることを示唆している。熱処理ののみによりCoSi2形成の拡散係数はシリコン原子で
あることより(3)、照射熱酸発射差によるCoSi2形成における拡散係数もシリコン原子と考え
られる。

照射温度100℃、照射量1.6×10¹⁵cm⁻²において、140℃イオン焼入のシリコン原子密度
数は約33と見積もられる。コバルト原子をシリコン面に直接注入してCoSi2を形成する場

Fig. 3 Dose dependence of interstitial silicon atoms in
CoSi2 layers. 140℃-CoSi2 samples were in-
duced with 40 keV-30°-Fe sputter dose in the
range of 1.7×10¹⁵-3.9×10¹⁶cm⁻² at 30, 60, and
100℃. The number of interstitial silicon atoms is proportional to the square-root of dose.

Fig. 4 Johnson's plot of the slope of the square of the
number of interstitial silicon vs dose. The best fit yields an activation energy of
Ea = 0.16 eV.
単位照射電流当たりのシリコン原子結合数の自乗を、照射密度の関数として、図4に示す。図中の直線の傾きより、この現象の活性化エネルギーが0.16eVと求められる。この値は、熱処理によるCoSiの形成の活性化エネルギー1.7-1.9eV[46]と比べてかなり小さい。熱処理によって形成されるCoSiの成長機構は、シリコン原子の拡散によって規定される。このときに得られる活性化エネルギー1.7-1.9eVは、シリコン結晶の半導体特性をもつ特異な構造、Siの核形成が進行すると仮定すれば、シリコン中に形成される原子核生成エネルギーが、照射イオンのエネルギーボードによって崩壊されていると考えられる。したがって、ここで得られた活性化エネルギー0.16eVは、イオン照射によって形成された点状核に起因する、CoSi核での増殖速度シリコン原子の拡散によって規定されることを示唆している。

以上の結果は、低温度領域においてCoSi核生成に対しシリコンイオンを照射したときに形成されるCoSiは、緻密に活性化された照射等価欠陥の挙動にともなうシリコン原子の拡散により規定されることを示唆している。

4. 結論

イオン照射によって形成されるコバルトシリサイドの相の成長機構を調べた。X線回折の結果より、CoSi核生成相にイオン照射を施すことにより、500-500℃でCoSiが形成されることがわかった。この温度において、熱処理のみでCoSiを形成する場合と比べて約150℃低く、イオン照射を用いることで低温度でシリサイドが生成されることがわたった。

100℃以下の照射温度において観察されるコバルトシリサイドの相は、CoSiであることわかった。この温度において、CoSi核生成相における熱処理によるシリサイド形成は観察されなかった。形成されたCoSi核の照射量依存性を調べた結果、CoSi核の形成は照射量の平方根に比例して増加することを示唆している。すなわち、拡散律速反応であることがわかった。このCoSi核の形成速度の温度依存性を調べた結果、この現象の活性化エネルギーは、0.16eVであることわかった。窒素近傍でのイオン照射によって形成されるCoSiの成長機構は、イオン照射させ
起電力の熱的運動に起因するシリコン原子の増殖抑制によって生じるものであると推定される。また、この反応の活性化エネルギー 0.16 eV は、シリコン原子の移動エネルギーに対応すると考えられる。

イオン照射により CoSイオン表面に原子混合反応を誘起させ CoSi膜を形成するプロセスは、コバルトを直接注入してシリサイドを形成するプロセスに比べ、少ない照射量で大量のシリサイドを形成できる特徴を有する。

参考文献
Electro-optic (EO) effects in laminated Assemblies of Poly (methyl methacrylate) Films with an Azo Dye: Anisotropic Property for Poling.

Yasuhiro Nishide, Hajime Tsuchiya, Shunsuke Yamane, Taku Matsuo, and Sinzo Yama
Graduate School of Engineering, Kyushu University

Very thin poly (methyl methacrylate) (PMMA) films containing an azo dye, as prepared by a casting-on-water method, were laminated on an ITO substrate. The electro-optic coefficient (n\textsubscript{2}) multilayered film assemblies were measured in order to evaluate the orientation of dye molecules assisted by contact poling. The anisotropic property for poling was clearly observed; the EO coefficient was different in opposite directions of electric field for poling. Reversing the direction of film lamination caused no change in this anisotropic the dependence of n\textsubscript{2} value on the direction of electric field. It is suggested that the anisotropic poling effects are ascribed to the noncentrosymmetric orientation of dye molecules at interface between the dye-doped PMMA film and electrode.
2. 実験
非線形光学活性な色素として Disperse Red (DRI: Alinick) を、高分子として poly (methyl methacrylate) (PMMA: Wako、重合度-6000) を用いた。製膜は旋廻用に準備して行った。すなわち、PAMAM comforts と DRI (30nm) を 1ml のクロロホルムに溶解した後、1ml のトルエンと展開補助の界面活性剤 poly (ethylene glycol) (25) deoxycholate を約 0.4ml 加え、展開溶液とした。

水中にITO基板を沈めた状態で水面上に約 1μm の展開溶液を滴下して製膜し、像展が発生した。
使用した試料は、色素を含まない膜（1枚）、色素を含む膜（10枚）、色素を含まない膜（1枚）の計合計12枚の膜を基板上に同一方向に配置することにより作成。作成した試料はデシケーター内で充分に乾燥した。

上部電極としてアルミナセイを真空蒸着し、アルミナセイITO電極間に電場を考え、通常の制膜法による蒸着電極（ポーリング）を用いた（Fig.1b）。また、アルミナセイ電極とITO電極との間のキャビティを測定し、PIMAの誘電率と電極間の酸素を用い、電場配向化（ECC）に著しい効果を示した。通常の制膜方法では、60℃に加熱して状態で500MV/mの電場を印加した。

E0がKsの測定はKsノレーザー用いた反射光を用い行った。この反射光法は装置単独で简便であり再現性に優れているので、障害のE0効果の評価に広く用いられている。

3. 結果と考察
一つの多層試料について、電極配向結晶の印加電場の相対を逆転して4回の測定を繰り返し、電気光学性能を評価した。その結果をFig.2に示す。試料は、ITO膜をポーリング電極の大きさで割った値である。試料は、ITO膜がプラスになるように電場をかけた場合
ポーリングの際の温度を変えた場合のt_a値の変化を図2に示す。比較的大きなt_a値の変動はパジメ材の等方性によるものであると考えられる。ポーリング時の温度が高くなると、電場配向の異方性が小さくなること

Fig. 2 Schematic illustration of a laminated film assembly for the measurement of EO effects (a), and changes in t_a values on reversing the direction of electric field for Poling (b). The horizontal axis shows the polarity of electric field on the ETO substrate. The sample was poled for four times by reversing the direction of electric field. The t_a values were measured at two points of the sample.

Fig. 3 Dependence of t_a values on the direction of electric Field for poled. Effects of Poling Temperature (a) and annealing at 130°C (b).
がわかる。示差走査熱量測定法(Differential Scanning Calorimetry; DSC)によると、PMMAのガラス転移点以上の温度、すなわちPMMA側と色素分子が十分に動ける温度でも、依然として電場配向効果と異方性が認められており、色素の非等方配向を維持する何かの要因が存在することを示している。また、ポーリング時の電場強度を徐々に高くと次第に電場配向の異方性が小さくなっていく傾向が示された。

多層膜試料を120°Cでアニールし、さらに80°Cでポーリング処理を施した場合のねじれをFig. 3に示す。120°Cで60分アニールした試料では、電場配向効果の異方性がかなり小さくなり、120分アニールするとほぼ異方性が失われた。120分間アニールすると蒸発したアルミニウム電極とITO電極との接着破壊が起こりやすくなることや、アニール後に膜が小さくなることから、高温での長時間のポーリング処理では、色素分子の相分離を含む膜構造の大きな変化が生じるものと推測される。電場配向効果の異方性は膜の断層層が減少するよりも早く現れ、ポーリングによる異方性が失われてしまうものと解釈される。

色素を含む膜をFig. 2aとは逆向きに陽極片に施した試料について、繰り返し電場配向処理を施した場合のねじれの変化をFig. 4に示す。この場合もFig. 2aと同様に、ITO電極をプラスにしてポーリングしたときの方が、逆向きに電場をかけた場合よりも小さいなじれを示した。水銀蒸着膜の非対称な構造特性ならびにPMMA被覆層における膜界面で、電場配向効果に影響を与えなかったことがわかった。水銀蒸着膜の膜界面は、表面で発生した高分子鎖が高分子鎖に接しているだけであり、PMMA膜で構成した試料で、ガラス転移点を越える温度でのポーリング処理によって膜界面が融解し、界面としての相分離が失われていくものと考えられる。
ポリアクリルアミドとPMMA膜を用いた電場配向効果の測定結果を示す。

図5に示すように、ポリアクリルアミドの電場配向効果は、電場方向と分子配向が同一となることを示している。

1. ポリアクリルアミドの電場配向効果は、電場方向と分子配向が同一となることを示している。
2. ポリアクリルアミドの電場配向効果は、電場方向と分子配向が同一となることを示している。
3. ポリアクリルアミドの電場配向効果は、電場方向と分子配向が同一となることを示している。
4. 電極と色素を含むPMMA微粒子膜の構造にポリスチレン膜を接着した場合でも、電極配向
効率の異方性が観測された。

これらの結果から、電極配向効率の異方性はPMMA膜・電極（あるいはポリスチレン膜）
界面へ色素が選択的に吸着することに由来していることが示唆された。

4. 論 文

本研究を行うにあたり、DSC測定などで中央分析センター工学分析室にご協力を賜った
付して謹謝を表したい。

5. 参考文献

Determination of trace gold in rock samples by ICP-MS

Faculty of Engineering, Kyushu University*
Faculty of Science, Kyushu University**
Tetsuya Nakanishi*, Takashi Yokoysama**, Eiji Izawa*

An accurate determination method of trace gold in rocks by inductively coupled plasma mass spectrometry (ICP-MS) was developed.

For the sample preparation, 0.5g of rock powder sample was decomposes by the addition of 20 ml HF and 1 ml HClO₄ at 120 °C, and the resulting solution was evaporated nearly to dryness at 140 °C. The residue was completely dissolved by 4 ml aqua reisa, and the solution was evaporated to 1 ml at 80 °C. Then gold was extracted into 20ml diethyl ether after the addition of 9 ml HBr (1.5N) and 0.5 ml H₂O₂. Separated ether solution was evaporated at room temperature. The same extraction was repeated twice to almost completely remove iron which interfere the determination of gold. Finally, the residue was dissolved and diluted with a 0.1 N HCl solution to 10ml.

The detection limit of gold (blank+3σ) was 0.004 ppb in solution (0.08 ppb in rocks) and the precision (C.V.) was 3.2% (σ = 0.2 ppb). The gold concentration of geological standard rocks (JB-1, JB-2 and JB-3) measured by this method was in close agreement with the recommended values.
海水縄維プラズマ質量分析装置（ICP-MS）は、従来のICP発光分析やフレームレーザー原子吸光分析と比べて1〜2桁以上の高感度を得ることができ、なおかつ検出素同分析が可能な装置である。1980年にHassらにより発表されて以来、環境汚染、半導体分析およびその他の各種の研究分野において、その重要性が増してきている。

金銅の形態メカニズムに関する研究において、地層中の金の分布とその集合プロセスを論じる上で、岩石試料中のppb〜サブppbレベルの金を定量することは不可欠である。これに伴い、岩石中の微量金の定量に関する研究として、放射化分析（NAA）*や黒鉛研磨子吸光分析（GFAAS）*等による報告がある。しかし、NAAの感度は低く、前処理で金を濃縮した場合でもppbレベルでの分析が限界である。また、GFAASでサブppbレベルの分析を行う場合では、微量金の検出への金の濃縮が必要となり、分析精度の低下が否めない。本研究ではICP-MSが高感度であることを活かし、岩石を一回に数分間により水溶液試料とし、極微量金を精度よく定量する分析法を検討した。

ICP-MSで極微量金の分析を行う際の主な問題点は、岩石中に比較的多量に含まれる鉄による試料の粘性の変化である。試料の同定法であるTaoの生成およびメソリー効果である。本研究では、有機溶媒を含む試料の同定の結果で鉄を分離し、その影響を除いた。また、Taoに対するTaoの生成比を求め、再現性の補正を行った。さらに、メソリー効果の補正についても検討を行った。

2. 実験方法

装置

本研究に使用した装置の、九州大学中央分析センターに設置された生体結膜プラズマ質量分析装置（Model PMS-2000（横河ナトリウムシステムズ））である。分析条件をTable1に示す。

試料および標準溶液

分析に用いた試料は、すべて和光純

<table>
<thead>
<tr>
<th>Table1: Operating conditions of ICP-MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF power</td>
</tr>
<tr>
<td>Argon gas flow rate</td>
</tr>
<tr>
<td>Argon gas</td>
</tr>
<tr>
<td>Acetylene gas</td>
</tr>
<tr>
<td>Load coil sampling aperture diameter</td>
</tr>
<tr>
<td>Sampling aperture diameter</td>
</tr>
<tr>
<td>Slit slicing aperture diameter</td>
</tr>
<tr>
<td>Solution uptake rate</td>
</tr>
<tr>
<td>Data Acquisition</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Measurement</td>
</tr>
</tbody>
</table>
3. 結果および考察

Feの影響

Auの定量におけるFeの影響を把握するため、Au標準溶液（1ppb, 0.1N HCl）に0-500ppmのFeを添加して分析を行った（Fig. 1）。Fe量に500ppmのFeが存在する場合、Auの測定値は実測値の1/2の値となり、粘性の変化の影響は顕著に現れている。通常の岩石には多いもので10%程度のFeが含まれているが、5000ppmのFe（岩石中に換算して10%）を含むと2回の抽出を行った結果は290ppm（除去率99.4%）ととなった。2回抽出におけるAuの回収率は約90%であり、Feの影響を効果的に吸収できることができる確認できた。
Taの影響

Auの同重体であるTaOは、岩石中に含まれるTaがプラズマ内で酸素と結合して生じる。そのため、1976年Oのチャンネルで得られたカウンタニにはAuの他にTaOのカウンタが加算される。TaOの標準容器（0-200ppm）を分析した際のTaおよびTaOのカウンタをFig.2に示す。このグラフから得られたTaOの生成比（TaO/Ta）は0.0028であった。

本研究では、Auと同時にTaのカウンタを測定し、生成比から算出されるTaOのカウンタをAuのカウンタから差し引くことでAu濃度の補正をおこなった。なお、補正はTaOのカウンタがAuの分析誤差を超える場合に行われた。

メモリー効果

微粒子分析の際に分析誤差一部が試料導入ラインに残留し、次の試料のサンプルに正の誤差を与えることがある。この現象はメモリー効果と呼ばれ、微粒子分析では深刻な問題となる。そのためICP-MSによる分析では、メモリーを除去するために通常0.1N硝酸による洗浄が推奨されている。

本研究では、1ppbのAuを導入した後、0.1N硝酸および0.1N塩酸を流しながらAuのカウンタを順列的に測定し、メモリーに対する洗浄効果を調べた。初めて硝酸を流し、途中から塩酸に切り替えた場合（Fig.3）。

硝酸で除去できなかったメモリーが、塩酸を流した際にAuのカウンタとして現れていた。この結果から、分析の際のAuのメモリーの除去には塩酸による洗浄の効果がであると考えられる。
0.2ppbの標準溶液をもとに拡散を行って
作成したAuの検量線をFig.4に示す。0.2ppb
の濃度における変動係数（C.V.）は3.2%であ
り、この検量線より算出した検出限界（プラ
ンク+3σ）は0.004ppbであった。0.5gの岩石
試料を用いて10mlの溶液試料を作成した場
合、岩石試料中のAuの検出限界は0.004ppbと
なる。すなわち岩石試料中のppb-サブppb
レベルのAuを精度良く定量することが可能
である。

標準岩石の定量結果

日本地質調査所の玄武岩標準岩石試料（JB-1、JB-2およびJB-3）の分析を行った結果をTable
2に示す。本研究で得られた分析値は、TaOの補正を必要としたJB-1を含め、他の研究結果の
値と良く一致し、分析法の妥当性が確認できた。

<table>
<thead>
<tr>
<th>Table 2. Gold concentration of rock reference samples.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICP-MS</td>
</tr>
<tr>
<td>JB-1</td>
</tr>
<tr>
<td>JB-2</td>
</tr>
<tr>
<td>JB-3</td>
</tr>
</tbody>
</table>

※Collutant value which precludes of TaO was removed.

4. 結論

本研究では、岩石試料中の微量金の定量法として、酸分解と熔解抽出を用いて試料溶液
を作成しICP-MSで分析する手法を確立した。試料溶液中のAuの検出限界は0.004ppbで
あり、岩石試料中のAuについてはサブppbレベルまで分析可能である。Ta濃度の高い岩石
試料についても、TaOの補正比を用いた補正により正確な定量値を得ることができた。ま
た、Auの検出の除去には、硝酸塩塩酸が効果的であることが確認できた。

- 40 -
参考文献
3) S. Terashima, S. Inho and A. Ando, Geostandards Newsletter, 16, 4 (1992)
The high-angle double-crystal X-ray diffractometry (HADOX) has been modified for the energy dispersive mode of operation using white X-rays. In this mode, the first crystal (the specimen crystal) is fixed so that the diffraction occurs for appropriate wavelengths; the X-ray beams diffracted by the specimen pass through a slit at a fixed position, and impinge on the second crystal (the analyzer crystal). Therefore, a change in the lattice constant of the specimen crystal results in a change in the wavelength of the diffracted beams passing the slit; this change can finally be measured as a change in the Bragg angle at the analyzer. The resolution is discussed in terms of the divergence of incident and diffracted beams, the difference between the Bragg angles at two crystals, and the quality of the crystals. The advantages of this method are shown by applying to the phase transition in a superconductor.
2. 原 理

高角度2結晶（+1）配置による高分解能特性を確保したままエネルギー分散測定を導入するために、従来のHADOXとは逆に、第一結晶に試料結晶を、第二結晶にアナライザーサイド結晶を配置する。Fig. 1に原理図を示す。X線発生装置（Auターゲット）からのX線を、試料結晶（第一結晶）によって任意の角度で反射される。このときのBragg条件は、試
§3。分解能

エネルギー分散型HADDOXの分解能は、幾つかの因子で決まる。すなわち、入射白X線の角速度、集光器（試料結晶）の回折ピーム発散角、第一結晶（試料結晶）の回折ピーム発散角、第二結晶での回折角の差、アライナライ化結晶の品質の良否、などである。発散角は、スリットSおよびS₀で決まる。ここでは詳細な議論は避け、Fig.2-3に測定例を挙げて解釈能をみる。なお、エネルギー分散型HADDOXでは、本来試料結晶のBragg角周りでの回折強度(θ, Δθ)を観る必要はないと、アライナライ化結晶の回折強度(θ, Δθ)との併用によって、θ₀-Δθ₀空間での2次元強度分布をみる方が分解能の理解をはかしやすいので、以下の例ではすべてこの2次元強度測定を行った。

Fig.2は第一、第二結晶での回折が、ともにシリンの444回折の強度分布をS₀＝

44。
は(a)では444(θ=79.3°)と444(θ=47.5°)の組み合わせである。入射角X線の角度θxの発散がると、結晶体からの回折X線は回折角の発散θxと同時に波長の発散θdを持ち得るので、アナライザ結晶によって試料の格子定数はd±θdにかかわらず測定される。格子定数測定のためθdはθxに対して、θd=θx [cos(θx)−cosθx]で与えられることが考えられる。この式は、θx=θd=0になること、すなわち入射角の発散がない結晶体定数測定に悪影響をおよぼさないことを示している。

(a)ではθx=θdを開口される結果に波長分の影響が考慮されていないので、シャープな強度分布がみられる。一方、(b)ではこの関係が崩れるので分布は広がっている。最後に、アナライザ結晶の厚さの違いによる分解能の違いの例をFig.5に示す。

Fig.4 Examples of two-dimensional intensity distribution in the ω−ωo space with the setting of (a) Si (444)-Si (444) and (b) Si (444)-Si (333).

Fig.5 Examples of two-dimensional intensity distribution in the ω−ωo space with the setting of (a) LSCO (0 0 14)-LSCO (0 0 14) and (b) LSCO (0 0 14)-Si (444).
4. 応用

エネルギー分散型HADDOXの実用化を検討するために、九州大学中央分析センターの回転対極型X線発生装置（理学電機製製BU-200）上にFig. 1の装置を設置し、広域像として高感度微動相分離相WYSを、超伝導盤移動付近で温度の関数として計測した。第一結晶として用いたLSCO試料は、合成微動相分極計装置（TSM法）により製造された円錐状単結晶から切り出した直径5.3 mm、厚さ1.0 mmのペレット状で、広い面（110）面に平行である。アナライザー結晶にはシリコン単結晶を用い、440回折を利用した。S1、S2およびS3からも1.0 mm、それぞれの結晶からの回折角は、格子定数の測定に対しては、θ₀ = 80.4°、θ₀ = 65.2°、格子定数の測定に対しては、θ₀ = 71.5°、θ₀ = 68.8°である。測定したロックインのカーブは、ピーク幅の100分の1程度で確定可能と判断し、aおよびcの相対精度をそれぞれ1.7×10⁻⁵、および3.6×10⁻⁵と推定した。測定結果をFig. 6に示す。これまでLSCOの単結晶が得られなかったこともあり、格子定数の測定例は少なく、しかも測定温度間隔、および測定精度の角度で、相転移現象の理解のための情報として不充分であったと考えられる。

今回のご測定により、超伝導相移点より30 K高温で観測することができた構造相転移が観測できること。低温側相を存在することは示されている低温相と相転移のないことが明らかとなった。一方、超音波測定に用いられた用語との相関においては、超伝導相の相転移の低温側で格子のc方向での熱拡散係数が大幅に小さくなることを見出した。
試料結晶の格子定数と特性X線の強さの関係から生ずるHADOK法の適用限界を克服するため、エネルギー分散型HADOK法を開発・実用化した。白色X線を利用することで回折強度に関しての問題点は依然残るが、用いる結晶が良質の場合は実用可能であるといえる。この方法の開発によって、特定の特性X線に対して適切な高角度回折が従来のHADOK法では対象と本来なかった結晶試料について、高分解能測定が可能となった。この方法の特徴は、試料結晶からの回折角を測定の目的によって自由に選択できる。アナライザー結晶に良質な単結晶を用い、この結晶からの回折角を試料結晶の回折角に近づけることにによって高分解度と分解能をコントロール出す点にある。従って、今後幅広い適用が期待できる。現在、SrTiO₃および高温超伝導体YBa₂Cu₃O₇₋ₓの格子定数測定を実行中である。

試料およびアナライザーとして用いたシリコンとLSCO単結晶は、それぞれ、信越半導体㈱、山梨大学工学部顕微鏡合成研究施設、見崎弘実教授・田中功助教授からの提供によるものである。ここに深く感謝致します。

参考文献
A series of polychlorinated dibenzo-\(\beta \)-dioxins ranging from null to eight atoms in chlorine contents was studied in regard to their photochemical degradations. The compounds containing chlorine atoms at lateral (2,3,7,8) ring positions were found to have the preferential breakdown rather than those at the peri (1,4,6,9) ring positions in methanol solution at wavelength > 280nm. Reductive dechlorination to produce less chlorinated dibenzo-\(\beta \)-dioxins consecutively occurred, and their photocatalytic rate of polychlorinated dibenzo-\(\beta \)-dioxins was found to be first order reaction.
ダイオキシンは、ポリ塩化ジペンゾール-ε-ダイオキシンの塩化されており、動物に強い急性毒性をもち、人に曝露されると発ガン性が懸念されている（Poland et al., 1976, Waihsa et al., 1989）。ダイオキシンは、2,3,7,8-四塩化ジペンゾール-ε-ダイオキシンが主成分であり、毒性の最も強い成分である。

1. 実験方法
2,3,7,8-四塩化ジペンゾール-ε-ダイオキシン（TCDD）は、Dow Chemical, Midland, MI, より、その他のポリ塩化ジペンゾール-ε-ダイオキシン異性体は、Aalaha, Inc., Comm. より入手した。

2. 光放射装置
ダイオキシンの光放射にRayonet型光放射化学反応装置（The Southern N. E. Ultraviolet Co.製）を用いた。本装置は、太陽光線の光放射を280nm、5×10⁻⁴ erg/sec·cm⁻²を有する4つのBULランプを透過し、検体が光放射を均一に受けるようにメリーーグーランド方式を採用した。

Fig. 1: Reversed phase high performance liquid chromatogram (Lightconyx, 1210, 200 × 4.6mm, 10C, Du Pont) of the photolysis of 2,3,7,8-tetrachlorodibenzo-p-dioxin

- 51 -
3. 光分解と光分解産物の同定

10ppm ダイオキシンのメタノール溶液を 2ml を、石英管（50 × 11mm）に入れ、0.5から 180 分間、光照射を 25℃で行った。

光照射後、反射波 20ml を用いて、逆相高速液体クロマトグラフィーにより未反応物と反応物を分離した（図2）。高速液体クロマトグラフィーの分析条件として、Lichrosorb PF-38、4.6mm（Du Pont）充填のステンレスカラム（250 × 4.6mm）、溶離液：メタノール、検体ダイオキシンの種類に応じて、溶出速度：0.5-2.0 ml min⁻¹、吸収波長 229-249nm を採用した。

分解産物の同定は、高速液体クロマトグラムより分離後、Mass Spectrometer 321 型（Du Pont）への直接導入法により得られた同分子の質量数（同2）と対応同位体比率（図3）から行った。
ポリ化リンジン-α-ジアミノ酸の光分解

Table 1. Photolytic rate constants and half-life of polyhedral trimethoxy-α-

<table>
<thead>
<tr>
<th>Polyhedral trimethoxy-α-diester</th>
<th>Rate constant (× 10^6 min^-1)</th>
<th>t_{1/2} (min)</th>
<th>Linear regression (r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD</td>
<td>1.9</td>
<td>3.2</td>
<td>0.997</td>
</tr>
<tr>
<td>1-Cl-DD</td>
<td>2.4</td>
<td>3.0</td>
<td>0.995</td>
</tr>
<tr>
<td>1,2,4-Tris-Diester</td>
<td>3.1</td>
<td>2.8</td>
<td>0.995</td>
</tr>
<tr>
<td>1,3,5-Tris-Diester</td>
<td>3.2</td>
<td>2.7</td>
<td>0.994</td>
</tr>
</tbody>
</table>

算出結果は以下の通りです。

α = 0.0069
β = 0.0048

ここで、αは1分間後の残留分光密度、βは1分分解定数、Aは定数で
なお、α、βを適応分解に関する半減期は1/2より求めた。

置換基をもたらないジエンジン-α-ジアミノ酸 (DD) は、かつ遅い光分解速度を示した

（表1）。DD の1位に塩素が置換された1-塩素ジエンジン-α-ジアミノ酸
(1-Cl-DD) の光分解速度は、DD とはほぼ
同様であったが、2 位に塩素が置換さ
れた2-塩素ジエンジン-α-ジアミノ酸
(2-Cl-DD) の光分解の一次反応定数は
DD より1.3倍に小さくなり、著し
く分解が遅くなった。DD の2
及び3 位の塩素置換(2,3-Cl-DD) は,
光分解を遅らせるが、対蒸気の位置
にあたるジエンジン-α-ジアミノ酸に
置換(2,3-Cl-DD) は光分解速度に影響
しなかった。2,3,5-Tris-DD と 2,3,5-Tris-DD
に、同等位であるジエンジンの置換

Fig. 4 Photodecomposition of 1,2,3,4-tetramethoxybenzo-α-

- diester and photodecomposition of less chlorinated

α-diester.
位への二塩素置換 (2,3-2,3,7,8あるいは2,7-2,3,7,8) された2,3,7,8四塩素ペンゼン- p-ダイオキシン(2,3,7,8-CHDD, いわゆる TCDD)は、半減期は、1.4～4.1年と大きく異なった。また、1位のベンゼン環への二塩素置換 (2-3,1,2-3,3,4-1) または2,4,5,6-CHDDでは、光反応性が著しく低下し、その半減期は、18.9年、9値に増大した。

2,3,4-CHDDの対照的部位の6,7,8,9をさらに塩素化された1,2,3,4,6,7,8-ペンゼン- p-ダイオキシン(1,2,3,4,6,7,8-CHDD)の光分解は、照射光と塩素の効果比率が増えるため

2,3,4,6,7,8-CHDD, いわゆる TCDD は、半減期が25年、9値に増大した。1,2,3,4,6,7,8,9-ペソイン- p-ダイオキシン(1,2,3,4,6,7,8,9-CHDD)の光分解は、照射光と塩素の効果比率が増えるため

3,4-CHDD, いわゆる TCDD は、半減期が25年、9値に増大した。1,2,3,4,6,7,8,9-ペソイン- p-ダイオキシン(1,2,3,4,6,7,8,9-CHDD)の光分解は、照射光と塩素の効果比率が増えるため

4,5,6,7,8-CHDD, いわゆる TCDD は、半減期が25年、9値に増大した。1,2,3,4,6,7,8,9-ペソイン- p-ダイオキシン(1,2,3,4,6,7,8,9-CHDD)の光分解は、照射光と塩素の効果比率が増えるため

Combyら (1971) は、2,3,6,7-CHDD, 2,3,6,7,8-CHDD, 2,3,4,6,7,8-メタノール溶液に

紫外線照射した光分解から、ポリ塩化ジベンゼン- p-ダイオキシンの光分解速度は、塩素化

により遅延されることが明らかにした。著者らも、これらのダイオキシン異性体間では、

Combyらと同様の結果を得た。さらに、本研究の詳細なダイオキシン異性体の光分解実験

から、1,4,6,9位置に塩素化されたダイオキシン異性体は、2,3,7,8位の塩素置換ダイオキシン

より著しく光分解を受けにくくなっていることが明らかにされた。

2. ポリ塩化ジペンゼン- p-ダイオキシンの光分解産物

3,4-CHDDの光照射に伴う未反応を含む水溶性未反応物と見なし保水期間をもつ光分解産物の逆相

HPLCで検出した。これらの光分解産物はHPLCで分取され、質量分析計への導入により

検出された分子量の同位体比率を用いて、HPLCの保持時間からポリ塩化ジペンゼン- p-ダイオキ

シンの光分解産物が同定された。ダイオキシン(例として2,3,7,8-CHDD)は分子イオン

が大きく、C1とDとDの有効な脱水素と三重重合分子イオン(M2)でも判定的なメス

ベクトグラフを図1に示した (Ben-Joe et al, 1972)。さらに、特徴的な分子イオンの同位体ク

ラスターと同位体比率(図2)は、分光計からの中気相イオンの同定に大いに役立っている

光照射により一次反応物として光分解する1,2,3,4-CHDDとその光分解産物の増長を図2に示

した。光照射されたダイオキシンは、逐次的な脱水素過程で塩素が、1位から一元ずつなく深いダイ

オキシン光分解産物を生じた。その際には生成する光分解化合物の種類やその生成速度は

変化するダイオキシンの脱塩素化されず影響された。

ダイオキシンの生成物としてから塩素置換体は、塩素置換体過程で生成される光分解化合物

-94-
Tab. 2 Deterioration photosynthesis of polyethylene dioxy-dioctyl, yields and irradiated times at maximum yield

<table>
<thead>
<tr>
<th>Polyethylene dioxy-dioctyl</th>
<th>Deterioration photosynthesis</th>
<th>Yield (%)</th>
<th>Irradiated times at maximum yield (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3CDD</td>
<td>DD*</td>
<td>3.7</td>
<td>10</td>
</tr>
<tr>
<td>2-3CDD</td>
<td>DD</td>
<td>2.6</td>
<td>2</td>
</tr>
<tr>
<td>2-4CDD</td>
<td>2-3CDD</td>
<td>10.0</td>
<td>3</td>
</tr>
<tr>
<td>2-7CDD</td>
<td>2-7CDD</td>
<td>0.8</td>
<td>2</td>
</tr>
<tr>
<td>2-7CDD</td>
<td>2-3CDD</td>
<td>9.0</td>
<td>40</td>
</tr>
<tr>
<td>1-2,4CDD</td>
<td>1-2,4CDD</td>
<td>3.4</td>
<td>40</td>
</tr>
<tr>
<td>1-2,3CDD</td>
<td>1-2,3CDD</td>
<td>10.4</td>
<td>27</td>
</tr>
<tr>
<td>1-2,4CDD</td>
<td>1-2,4CDD</td>
<td>27.0</td>
<td>163</td>
</tr>
<tr>
<td>1-2,3CDD</td>
<td>1-2,3CDD</td>
<td>29.1</td>
<td>80</td>
</tr>
<tr>
<td>1-2,4CDD</td>
<td>1-2,4CDD</td>
<td>9.7</td>
<td>55</td>
</tr>
<tr>
<td>1-2,3CDD</td>
<td>1-2,3CDD</td>
<td>5.8</td>
<td>40</td>
</tr>
<tr>
<td>1-2,4CDD</td>
<td>1-2,4CDD</td>
<td>18.7</td>
<td>21</td>
</tr>
<tr>
<td>1-2,3CDD</td>
<td>1-2,3CDD</td>
<td>10.5</td>
<td>30</td>
</tr>
</tbody>
</table>

*: Dibenzo-p-dioxin
**: 1,2,3,4,6,7,8,9-Octahydro dibenzo-p-dioxin
***: CI-photos are not determined.

** ピロールジエンジン: p-Dibenzo-p-dioxinの光酸化率の後に、光分解でくすぶく極性の大きい化合物（図3において1-3分の保持時間で示すピークに相当する化合物）が生成した。この極性化合物は、DDの酸化産物とそのジアゾメネジンによるメルト体を、質量分析により、イオン化強度の割合で、ベンゾールに由来するフェノール性物質であることが示された。DDの光分解産物の主要なフラグメントは、m/z 186 (M+1) である。
ポリ塩化ジベンゾ-α-ジイザニンの毒性は広範囲にわたり、また、高い毒性の発現に
はディオキシンの2,3,7,8-位のうち少なくとも二つの位置が塩基で置換されることが必須条
件である。Polandら（1996）は、動物系毒性試験から、最も毒性の高いディオキシンは
2,3,7,8-TCDD（相対毒性100）であり、2,3,7-TCDD、2,3-ClDD及びDDの相対毒性は、おの
の0.06、9×10^{-3} 9×10^{-2}であることを示した。この報告に示されたように、塩基
2,3,7,8-TCDDは塩基により2,3,7-TCDDになるので、光分解は2,3,7,8-TCDDの毒性を著
しくした。さらに、表1で明らかにしたように、2,3,7,8-CHDDの光分解産物である一連の塩素
化ディオキシン、2,3,7-ClDD、2,3-ClDD及びDDの逐次期は、徐次小さくなるので、光分
解産物のディオキシンの光分解はますます加速される。塩基シアン化物のディオキシン
の内で、その大部分は低毒性の1,2,3,4,6,7,8-ClDDである。塩基反応や脂肪の分解を
を化学的に促進するので、2,3,7,8-TCDDから塩基的に2,3,7,8-ClDDが生成する可能性は極
く低く、また塩基で2,3,7,8-CHDDが生成しても、それは塩基により逐次に塩基性化し、さらに
にはディオキシン環の脱水により無毒性化され推測された（図5）。

Fig. 5 Photosynthetic pathways of polychlorinated benzo-pdioxins
参考文献

Beu-Jor, N. P., G. Saint-Ruf and M. Mangane 1972
J. Heterocycl. Chem., 9, 691-693
Crosby, D. G., A. S. Wong, J. R. Flimmer and E. A. Woolson 1971
Science, 173, 748-750
環境庁ダイオキシンリスク評価研究会 1997
ダイオキシンのリスク評価，pp.196，中央法規出版
Masuda, Y. 1987
Toxicology Forum, 10, 553-555
Morita, M., A. Yasuhara and H. Ito 1985
Chemosphere, 16, 8-9
Nakazumi, M. 1987
Toxicology Forum, 10, 575-582
Poland, A., E. Glover and A. S. Kende 1976
J. Biol. Chem., 251, 4936-4939
Cancer Lett., 29, 489-496

— 57 —